新闻  |   论坛  |   博客  |   在线研讨会
串行数据线的一个总结和概述
xie0jing0 | 2010-01-01 21:04:14    阅读:4999   发布文章

RS232
是个人计算机上的通讯接口之一,由电子工业协会,EIA) 所制定的异步传输标准接口。通常 RS-232 接口以9个引脚 (DB-9) 或是25个引脚 (DB-25) 的型态出现。(Electronic Industries Association
RS-232-C标准规定的数据传输速率为每秒50、75、100、150、300、600、1200、2400、4800、9600、19200波特。
RS-232-C标准规定,驱动器允许有2500pF的电容负载,通信距离将受此电容限制,例如,采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。传输距离短的另一原因是RS-232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信。
以上规定说明了RS-323C标准对逻辑电平的定义。对于数据(信息码):逻辑“1”(传号)的电平低于-3V,逻辑“0”(空号)的电平高于+3V;对于控制信号;接通状态(ON)即信号有效的电平高于+3V,断开状态(OFF)即信号无效的电平低于-3V,也就是当传输电平的绝对值大于3V时,电路可以有效地检查出来,介于-3~+3V之间的电压无意义,低于-15V或高于+15V的电压也认为无意义,因此,实际工作时,应保证电平在±(3~15)V之间。
由于RS232接口标准出现较早,难免有不足之处,主要有以下四点:
(1)接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL电平不兼容故需使用电平转换电路方能与TTL电路连接。
(2)传输速率较低,在异步传输时,波特率为20Kbps;因此在“南方的老树51CPLD开发板中,综合程序波特率只能采用19200,也是这个原因。”
(3)接口使用一根信号线和一根信号返回线而构成共地的传输形式,这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。
(4)传输距离有限,最大传输距离标准值为50英尺,实际上也只能用在50米左右。
 
RS485
RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上最多可以挂接32个结点。在RS485通信网络中一般采用的是主从通信方式,即一个主机带多个从机。很多情况下,连接RS-485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,这有二个原因:(1)共模干扰问题: RS-485接口采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。理论上RS485的最长传输距离能达到1200米。
1. RS-485的电气特性:逻辑“1”以两线间的电压差为+(2—6)V表示;逻辑“0”以两线间的电压差为-(2—6)V表示。接口信号电平比RS-232-C降低了,就不易损坏接口电路的芯片, 且该电平与TTL电平兼容,可方便与TTL 电路连接。
2. RS-485的数据最高传输速率为10Mbps
3. RS-485接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。
4. RS-485最大的通信距离约为1219M,最大传输速率为10Mb/S,传输速率与传输距离成反比,在100Kb/S的传输速率下,才可以达到最大的通信距离,如果需传输更长的距离,需要加485中继器。RS-485总线一般最大支持32个节点,如果使用特制的485芯片,可以达到128个或者256个节点,最大的可以支持到400个节点。
因RS-485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口。 因为RS485接口组成的半双工网络,一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输。 RS485接口连接器采用DB-9的9芯插头座,与智能终端RS485接口采用DB-9(孔),与键盘连接的键盘接口RS485采用DB-9(针)。
 
RS422
RS-422是差模传输,抗干扰能力强,能传1200米,RS232最多传输15米。RS422总线与RS485和RS422电路原理基本相同,都是以差动方式发送和接受,不需要数字地线。差动工作是同速率条件下传输距离远的根本原因,这正是二者与RS232的根本区别,因为RS232是单端输入输出,双工工作时至少需要数字地线 、发送线和接受线三条线(异步传输),还可以加其它控制线完成同步等功能。
RS422通过两对双绞线可以全双工工作收发互不影响,而RS485只能半双工工作,发收不能同时进行,但它只需要一对双绞线。
RS422和RS485在19kpbs下能传输1142米。用新型收发器线路上可连接台设备。
 
1394
IEEE 1394,别名火线(FireWire)接口,是由苹果公司领导的开发联盟开发的一种高速度传送接口,数据传输率一般为800Mbps。火线(FireWire)是苹果公司的商标。Sony的产品称这种接口为iLink。
IEEE1394的特点可以归结如下:
(1)高速率
IEEE1394-1995中规定速率为100Mbit/s到400Mbit/s。IEEE1394b中更高的速度是800Mbit/s到3.2Gbit/s。其实400Mbps就几乎可以满足所有的要求。现在通常可能达到的物理流LSI速度是200Mbps。另外,实际传输的数据一般都要经过压缩处理,并不是直接传输原始视频数据。因此可以说,200Mbps已经是能够满足实际需要的速度。但对多路数字视频信号传输来说,传输速率总是越高越好、永无止境。
(2) 实时性
IEEE1394的特点是利用等时性传输来保证实时性。在这一点上,SSA,FiberChannel及Ultra SCSI也都与IEEE1394具有同样的性能。
(3) 采用细缆,便于安装
4. 根信号线与2根电源线构成的细缆使安装十分简单,而且价格也比较便宜。但接点间距只有4.5米,似乎略显不足。所以也有人在探讨延伸接点间距的方法。已发表的实验品POF可以将接点间距延长至70米。
(4) 总线结构
IEEE1394是总线,不是I/O。向各装置传送数据时,不是像网络那样用I/O传送数据,而是按IEEE1212标准读写列入转换的空间。总之,从上一层看,IEEE1394是与PCI相同的总线。
1394总线和常见的USB总线的不一样之处在于1394是一个对等的总线, 对等总线就是说, 任何一个总线上的设备都可一主动的发出请求. 有点象圆桌会议一样, 大家地位平等. 而USB总线上的设备, 则都是等待主机发送请求, 然后做相应的动作. 因而1394设备更加智能化一些, 当然因此也变得复杂一些, 成本高一些. 1394总线的这个特性决定了1394可以是脱离以桌面主机为中心的束缚, 对于数字化家电来说, 1394更加有吸引力.
1394总线的拓朴结构和USB是一样的, 是树形结构. 树形结构就是所有的连接在一起的设备不能形成一个环(圈). 否则就可能不能正常工作. 不过1394b提出了一个避免环状结构的方法, 在即使设备连接形成一个圆圈时, 也能保证正常工作. 1394和USB这类串行总线和PCI这类并行总线不一样, 1394和USB这类总线, 两个设备之间如果必须经过第三个设备, 那么数据必须也从第三个设备穿过, 也就是说第三个设备也要参与传输. 而PCI这类并行总线, 就象一条大马路铺到各家的门口, 两个设备如果商量好传输数据, 并申请到了总线, 就可以直接在两个设备间传输, 不用经过第三家. 当然更本质的区别是, 1394是串行的, 而PCI是并行的.
1394总线上的设备之间也会选举一些设备作为总线的管理作些额外的工作, 如
根节点: 主要是在总线仲裁中做最终的裁判.
同步资源管理器: 主要是在同步传输中, 管理带宽, 或者提供总线的拓朴结构和有限的电源管理.
总线管理器: 可以设置根节点, 提供总线拓朴结构, 优化网络的响应时间, 和更高级的电源管理.
(5) 热插拔
能带电插拔。增删新装置,不必关闭电源,操作非常简单。
(6) 即插即用
增加新装置不必设定ID,可自动予以分配。SCSI使用者必须设定SCSI地址,而IEEE1394的使用者不需要任何相关知识,操作非常简单,接上就可以用。
实际上,每当有新的设备接入某个1394端口时, 整个总线将会进行一个'欢迎仪式', 这个是总线自发的, 和PC主机没有特殊的关系, 学名叫做'总线复位'(bus reset). 这个过程, 所有设备重新给自己起名字(节点标识, NODE ID), 新的设备趁机为自己取个名字. 1394的起名字的机制很简单, 从0开始往上, 最多到62. 一般叶子节点的id小, 树根的id最大. 这个仪式结束后, 大家又是各自干各自的事情了. 1394的bus reset是很平常的事情, 短的只要1us, 长的要160us, 而USB下, 却跟凤凰涅盘一样隆重而冗长, 至少在USB2下, 一个端口复位要150ms, 而一个bus reset就要复位所有连接设备的port, 所以在连接4个设备时必须600ms+以上的时间. 这个并无好坏之分, 只是各自的工作方式不一样而已.
 
USB
USB ,是英文Universal Serial BUS(通用串行总线)的缩写,而其中文简称为“通串线,是一个外部总线标准,用于规范电脑与外部设备的连接和通讯。是应用在PC领域的接口技术。USB接口支持设备的即插即用和热插拔功能。USB是在1994年底由英特尔、康柏、IBM、Microsoft等多家公司联合提出的。
第一代:USB 1.0/1.1的最大传输速率为12Mbps。1996年推出。
第二代:USB 2.0的最大传输速率高达480Mbps。USB 1.0/1.1与USB 2.0的接口是相互兼容的。
第三代:USB 3.0 最大传输速率5Gbps, 向下兼容USB 1.0/1.1/2.0
USB2.0的最高传输速率为480Mbps,即60MB/s。不过,大家要注意这是理论传输值,如果几台设备共用一个USB通道,主控制芯片会对每台设备可支配的带宽进行分配、控制。
USB2.0 High Speed:理论速度是480Mbps,对应之前的USB2.0;随着现在影音、软件、游戏等数据的增大,随便一个电影都要达到700MB以上,DVD画质的至少1.4GB,更不要谈高达25G左右的蓝光电影了。USB2.0的理论传输速度为480MBPS,注意这个单位是兆位每秒而已,换算过来也就是60MB/s,而由于芯片、固件版本、电脑硬件等的制约,能超过30MByte/S的USB设备没有多少。
一、USB与IEEE1394的相同点主要有哪些?
两者都是一种通用外接设备接口。
两者都可以快速传输大量数据。
两者都能连接多个不同设备。
两者都支持热插拨。
两者都可以不用外部电源。
二、USB与IEEE1394的不同点有哪些?
两者的传输速率不同。USB的传输速率与IEEE1394的速率比起来真是小巫见大巫了。USB的传输速率现在只有480Mbps,只能连接键盘、鼠标与麦克风等低速设备,而IEEE1394可以使用3.2Gbps,可以用来连接数码相机、扫描仪和信息家电等需要高速率的设备。
两者的结构不同。USB在连接时必须至少有一台电脑,并且必须需要HUB来实现互连,整个网络中最多可连接127台设备。IEEE1394并不需要电脑来控制所有设备,也不需要HUB,IEEE1394可以用网桥连接多个IEEE1394网络,也就是说在用IEEE1394实现了63台IEEE1394设备之后也可以用网桥将其他的IEEE1394网络连接起来,达到无限制连接。
两者的智能化不同。IEEE1394网络可以在其设备进行增减时自动重设网络。USB是以HUB来判断连接设备的增减了。
两者的应用程度不同。现在USB已经被广泛应用于各个方面,几乎每台PC主板都设置了USB接口,USB2.0也会进一步加大USB应用的范围。IEEE1394现在只被应用于音频、视频等多媒体方面。
 
USB3.0
USB 3.0简要规范如下:
·提供了更高的每秒4.8Gb传输速度
·对需要更大电力支持的设备提供了更好的支撑,最大化了总线的电力供应
·增加了新的电源管理职能
·全双工数据通信,提供了更快的传输速度
·向下兼容USB 2.0设备
μPD720200符合USB 3.0规范Revision 1.0版本,支持USB 3.0 Super-Speed(5Gbps)和High-Speed(480Mbps)以及Full-Speed(12Mbps),并向下兼容USB 2.0/1.1标准。该芯片支持PCI Express 2.0总线,工作电压3.3V或1.05V,176pin FBGA封装,封装面积10x10mm。
英特尔公司(Intel)和业界领先的公司一起携手组建了USB 3.0推广组,旨在开发速度超过当今10倍的超高效USB互联技术。该技术是由英特尔,以及惠普(HP)、NEC、NXP半导体以及德州仪器(Texas Instruments)等公司共同开发的,应用领域包括个人计算机、消费及移动类产品的快速同步即时传输。
 
PCI
PCI(Peripheral Component Interconnect)
一种由英特尔(Intel)公司1991年推出的用于定义局部总线的标准。此标准允许在计算机内安装多达10个遵从PCI标准的扩展卡。最早提出的PCI总线工作在33MHz频率之下,传输带宽达到133MB/s(33MHz * 32bit/s),基本上满足了当时处理器的发展需要。随着对更高性能的要求,后来又提出把PCI 总线的频率提升到66MHz,传输带宽能达到266MB/s。1993年又提出了64bit的PCI总线,称为PCI-X,目前广泛采用的是32-bit、33MHz或者32-bit、66MHz的PCI 总线,64bit的PCI-X插槽更多是应用于服务器产品。从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,具体由一个桥接电路实现对这一层的管理,并实现上下之间的接口以协调数据的传送。管理器提供信号缓冲,能在高时钟频率下保持高性能,适合为显卡,声卡,网卡,MODEM等设备提供连接接口,工作频率为33MHz/66MHz。
PCI的优缺点
优点:总线结构简单、成本低、设计简单。缺点也比较明显, 并行总线无法连接太多设备,总线扩展性比较差,线间干扰将导致系统无法正常工作;当连接多个设备时,总线有效带宽将大幅降低,传输速率变慢;为了降低成本和尽可能减少相互间的干扰,需要减少总线带宽,或者地址总线和数据总线采用复用方式设计,这样降低了带宽利用率。 PCI E总线是为将来的计算机和通讯平台定义的一种高性能,通用I/O互连总线。xpress
 
PCIE
继PCI (个人计算机扩展总线接口规范)之后的规范。2002年7月23日,PCI-SIG 正式公布了PCI Express 1.0规范,并于2007年初推出2.0规范(Spec 2.0),将传输率由PCI Express 1.1的2.5GB/s提升到5GB/s;目前主流的显卡接口都支持PCI-E 2.0。PCI 属于并行传输方式,即使用多条信号线同时并行传输多位数据,但 PCI Express 采用的是每次 1 位的串行传输方式,其最高数据传输速度为 8Gbit / s ,最大电缆长度 3m 。开发阶段的代号是 3GIO
与PCI总线相比,PCI Express总线主要有下面的技术优势:
1) 是串行总线,进行点对点传输,每个传输通道独享带宽。
2) PCI Express总线支持双向传输模式和数据分通道传输模式。其中数据分通道传输模式即PCI Express总线的x1、x2、x4、x8、x12、x16和x32多通道连接,x1单向传输带宽即可达到250MB/s,双向传输带宽更能够达到500MB/s,这个已经不是普通PCI总线所能够相比的了。
3) PCI Express总线充分利用先进的点到点互连、基于交换的技术、基于包的协议来实现新的总线性能和特征。电源管理、服务质量(QoS)、热插拔支持、数据完整性、错误处理机制等也是PCI Express总线所支持的高级特征。
4) 与PCI总线良好的继承性,可以保持软件的继承和可靠性。PCI Express总线关键的PCI特征,比如应用模型、存储结构、软件接口等与传统PCI总线保持一致,但是并行的PCI总线被一种具有高度扩展性的、完全串行的总线所替代。
5) PCI Express总线充分利用先进的点到点互连,降低了系统硬件平台设计的复杂性和难度,从而大大降低了系统的开发制造设计成本,极大地提高系统的性价比和健壮性。从下面表格可以看出,系统总线带宽提高同时,减少了硬件PIN的数量,硬件的成本直接下降。
 
SATA
SATA的全称是Serial Advanced Technology Attachment(串行高级技术附件,一种基于行业标准的串行硬件驱动器接口),是由Intel、IBM、Dell、APT、Maxtor和Seagate公司共同提出的硬盘接口规范。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,在当年的IDF Fall 大会上,Seagate宣布了Serial ATA 1.0标准,正式宣告了SATA规范的确立。Sata2.0支持1.3Gb/s传输速率,在SATA2.0扩展规范中,3Gb/s被提到的频率最高。由于SATA使用8bit/10bit编码,所以3Gb/s等同于375MB/s的接口速率。
 
eSATA
External Serial ATA的略称,是为面向外接驱动器而制定的Serial ATA 1.0a的扩展规格。虽然规模比较小,但已经有相对应的产品在市面流通。
eSATA的优势
和常见的USB2.0和IEEE1394两种常见外置接口相比,eSATA最大的优势就是数据传输能力。eSATA的理论传输速度可达到1.5Gbps或3Gbps,远远高于USB2.0的480Mbps和IEEE 1394的400Mbps。在实际测试中,从电脑中复制一个1.36GB大小的文件到采用不同接口的外置存储设备中,eSATA接口的设备所耗费的时间远低于USB2.0或IEEE 1394设备,速度快了近一倍。随着eSATA的出现,外置接口的传输率也首次远远大于了硬盘等设备的内部传输率。
 

*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

参与讨论
登录后参与讨论
推荐文章
最近访客