新闻  |   论坛  |   博客  |   在线研讨会
抗干扰技术总结
xie0jing0 | 2009-12-26 16:45:03    阅读:6220   发布文章

1、概述

电磁兼容性设计(EMC:electromagnetic compatibility)
包括如下含义:1.设备或系统具有抵抗给定电磁干扰的能力;2. 设备或系统具有不产生超过限度的电磁干扰的能力。
干扰的基本要素有三个:
  (1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。
  (2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。
干扰耦合传播途径:
    传导干扰;辐射干扰。
抗干扰设计的基本原则:
抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
主要手段:接地;屏蔽和隔离;滤波和吸收。
2、干扰耦合途径
2.1 传导耦合
传导耦合是骚扰源与敏感设备之间的主要耦合途径之一。传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰。按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合。在开关电源中,这三种耦合方式同时存在,互相联系。
⑴电路性耦合
电路性耦合是最常见、最简单的传导耦合方式。其又有以下几种:
①直接传导耦合
导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传导至电路而造成对电路的干扰。
②共阻抗耦合
由于两个以上电路有公共阻抗,当两个电路的电流流经一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路,这就是共阻抗耦合。形成共阻抗耦合骚扰的有:电源输出阻抗、接地线的公共阻抗等。
⑵电容性耦合
电容性耦合也称为电耦合,由于两个电路之间存在寄生电容,使一个电路的电荷通过寄生电容影响到另一条支路。
⑶电感性耦合
电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰。
2.2 辐射耦合
通过辐射途径造成的骚扰耦合称为辐射耦合。辐射耦合是以电磁场的形式将电磁能量从骚扰源经空间传输到接受器。通常存在四种主要耦合途径:天线耦合、导线感应耦合、闭合回路耦合和孔缝耦合。
⑴天线与天线间的辐射耦合
在实际工程中,存在大量的无意电磁耦合。例如,开关电源中长的信号线、控制线、输入和输出引线等具有天线效应,能够接收电磁骚扰,形成无意耦合。
⑵电磁场对导线的感应耦合
开关电源的电缆线一般是由信号回路的连接线、功率级回路的供电线以及地线一起构成,其中每一根导线都由输入端阻抗、输出端阻抗和返回导线构成一个回路。因此,电缆线是内部电路暴露在机箱外面的部分,最易受到骚扰源辐射场的耦合而感应出骚扰电压或骚扰电流,沿导线进入设备形成辐射骚扰。
⑶电磁场对闭合回路的耦合
电磁场对闭合回路的耦合是指回路受感应最大部分的长度小于四分之一波长。在辐射骚扰电磁场的频率比较低的情况下,辐射骚扰电磁场与闭合回路的电磁耦合。
⑷电磁场通过孔缝的耦合
电磁场通过孔缝的耦合是指辐射骚扰电磁场通过非金属设备外壳、金属设备外壳上的孔缝、电缆的编织金属屏蔽体等对其内部的电磁骚扰。
3、方法总结(一)
从基本原则出发,抗干扰措施如下
3.1 抑制干扰源
  抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的 di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。
  抑制干扰源的常用措施如下:
  (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
  (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。
  (3)给电机加滤波电路,注意电容、电感引线要尽量短。
  (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
  (5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
3.2切断干扰传播路径
  按干扰的传播路径可分为传导干扰和辐射干扰两类。
  所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。
  切断干扰传播路径的常用措施如下:
  (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。
  (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
  (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。
  (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。
  (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。
  (6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。
  (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。
3.3 提高敏感器件的抗干扰性能
提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。提高敏感器件抗干扰性能的常用措施如下:
(1)布线时尽量减少回路环的面积,以降低感应噪声。
(2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。
  (3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。
  (4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813, X25043,X25045等,可大幅度提高整个电路的抗干扰性能。
  (5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。
  (6)IC器件尽量直接焊在电路板上,少用IC座。
4、方法总结(二)
从主要手段出发,常用的方法是屏蔽、接地和滤波。
4.1 接地
所谓接地,就是在两点间建立传导通路,以便将电子设备或元件连接到某些叫作"地"的参考点上。换一种说法就是:信号电流流回信号源的低阻抗路径。接地的主要目的如下:提供公共参考0电位,防止外界电磁干扰,保证安全工作。地线的阻抗是指交流状态下的接地线呈现的阻抗,并不是一般意义上的电阻。主要分为三种:工作地、保护地、屏蔽地。
接地抗干扰技术的主要内容,其一是避开地环电流的干扰;其二是降低公共地线阻抗的耦合干扰。“一点接地”有效地避开了地环电流;而在“一点接地”前提下,并联接地则是降低公共地线阻抗的耦合干扰的有效措施;它们是工业控制系统采用的最基本的接地方法。
在电路系统设计中应遵循"一点接地"的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现"一点接地"。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面作为参考地,需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。
在实际电路系统中,要避免低频电路、高频电路、数字电路、模拟电路、小功率电路、强功率电路共用地线,应分别将单独连接后,再连接到公共参考点上。同类型电路可以串联单点接地,不同类型并联单点接地。公共参考点作为大地,按照国家标准,要埋设一个不大于4Ω的独立接地体。
注意串联接地时,由于地线存在电阻,各个电路间相互发生干扰。尤其是强信号电路将严重干扰弱信号电路。如果必须要这样使用,应当尽力减小公共地线的阻抗,使其能达到系统的抗干扰容限要求。串联的次序是,最怕干扰的电路的地接近地点,而最不怕干扰的电路的地应当接远地点。但不同类型电路要使用并联接地方式。并联接地中各个电路的地电位只与其自身的地线阻抗和地电流有关,互相之间不会造成耦合干扰。因此,有效地克服了公共地线阻抗的耦合干扰问题。值得注意的是,虽然采用了并联接地方式,但是地线仍然要粗一些,以使各个电路部件之间的地电位差尽量减小。这样,当各个部件之间有信号传送时,地线环流干扰将减小。举例如下图:
 
3.2屏蔽和隔离
采用屏蔽技术可以有效地抑制电磁辐射干扰,即用电导率良好的材料对电场屏蔽,用磁导率高的材料对磁场屏蔽。屏蔽有两个目的,一是限制内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入该内部区域。
a. 电场耦合的屏蔽和抑制技术
  造成电场耦合干扰的原因是两根导线之间的分布电容产生的耦合。最简单的方法是采用远离技术:弱信号线要远离强信号线敷设,尤其是远离动力线路。工程上的“远离”概念,通常取干扰导线直径的40倍,即认为足够了。同时,避免平行走线也很有效。
克服电场耦合干扰最有效的方法是屏蔽。因为放置在空心导体或者金属网内的物体不受外电场的影响。请注意,屏蔽电场耦合干扰时,导线的屏蔽层最好不要两端连接当地线使用。因在有地环电流时,这将在屏蔽层形成磁场,干扰被屏蔽的导线。正确的作法是把屏蔽层单点接地,一般选择它的任一端头接地。
b. 磁场耦合的抑制技术
  抑制磁场耦合干扰的好办法应该是屏蔽干扰源。大电机、电抗器、磁力开关和大电流载流导线等等都是很强的磁场干扰源。但把它们都用导磁材料屏蔽起来,在工程上是很难做到的。
如金属和铁之类导磁率高的材料才能在极低频率下达到较高屏蔽效率。这些材料的导磁率会随着频率增加而降低,另外如果初始磁场较强也会使导磁率降低,还有就是采用机械方法将屏蔽罩作成规定形状同样会降低导磁率。
在高频电场下,采用薄层金属作为外壳或内衬材料可达到良好的屏蔽效果,但条件是屏蔽必须连续,并将敏感部分完全遮盖住,没有缺口或缝隙。然而在实际中要制造一个无接缝及缺口的屏蔽罩是不可能的,由于屏蔽罩要分成多个部分进行制作,因此就会有缝隙需要接合,另外通常还得在屏蔽罩上打孔以便安装与插卡或装配组件的连线,制造、面板连线、通风口、外部监测窗口以及面板安装组件等都需要在屏蔽罩上打孔,从而大大降低了屏蔽性能。
所以,通常是采用一些被动的抑制技术。要有效抑制磁场耦合干扰,仍然是远离技术。同时,也要避免平行走线。
c.屏蔽线的使用
屏蔽线有三种使用情况。(a)是单端接地方式。假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(b)是两端接地方式。由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比(a)差。(a)(b)都有屏蔽电场耦合干扰作用。(c)的屏蔽层悬浮,因此,它只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。
    屏蔽接地的使用原则:屏蔽地一定与对应的逻辑地相连;信号工作频率较低时(<1MHz)屏蔽地与逻辑地一点相连,在连接处与保护地统一单点接地;信号工作频率较高时(>10MHz)屏蔽地就近多点接地;信号频率居中时,单点接地地线长度要求小于1/20λ,否则采用多点接地。
d.双绞线的使用
  双绞线原理在于形成的小回路的面积相等而法方向相反,因此,其磁场干扰可以相互抵消。双绞线的结构对电场耦合干扰的抑制毫无能力。当给双绞线加上屏蔽层后,一个价廉物美的传输线就诞生了。
 
在低频且传输距离有限的情况下,各种用法对磁场干扰的抑制如图4所示。其中图4(a)对磁场干扰有55dB的衰减能力,但不能抑制电场耦合;图4(b)是加了屏蔽的双绞线,有了抗电场干扰能力;图4(c)中屏蔽层单端接地,它的抗磁场耦合能力最强;而屏蔽层两端接地的双绞线图4(d)只有63dB的衰减能力。因此这里使用有屏蔽层且单端接地的双绞线连接效果最好。
  双绞线最好的应用是作平衡式传输线路。因为两条线的阻抗一样,自身产生的磁场干扰或外部磁场干扰都可以较好的抵消。同时,平衡式传输又独具很强的抗共模干扰能力,因此成为大多数计算机网络的传输线。例如,物理层采用RS422A或RS485通信接口,就是很好的平衡传输模式。
e.隔离
电源隔离:数字模拟电路、小功率大功率电路电源独立,不可直接公地,电气连接处可采用光耦连接。
IO隔离:采用光耦隔离。
空间隔离:远离干扰源或用网罩屏蔽。
采用光耦隔离具有以下优点:可以将两部分浮置,去掉公共地线,解决噪声电压的串扰,还可以解决驱动和阻抗匹配的问题。应用时要注意其响应频率,传输信号在100KHz以下可以选用东芝的TLP521、TLP621、夏普的PC504、PC829等,高速信号传输可选用TLP551、PC618、HP的6N135等。达林顿输出的光耦可用于直接驱动低频负载,有6N138、TLP570、PC505等。可控硅输出的光耦用于大功率负载驱动,如TLP510等。
3.3滤波和吸收
滤波是抑制传导干扰的有效方法。EMI滤波器作为抑制电源线传导干扰的重要单元,可以抑制来自电网的干扰对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。在设备或系统的电磁兼容设计中具有极其重要的作用。在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性。恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分。另外,去耦电容的使用对电源噪声的抑制作用也很明显。
电磁干扰滤波器也称为EMI 滤波器,它对串模、共模干扰都起到抑制作用,能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
直流电网电磁干扰滤波器类型:
基本电路:
图4-1:简易式单级EMI滤波器电路
在图4-1中,该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。此外,适当增加电感量,可改善低频衰减特性。C1和C2采用薄膜电容器,容量范围大致是0.01μF~0.47μF,主要用来滤除串模干扰。C3和C4跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。C3和C4亦可并联在输入端,仍选用陶瓷电容,容量范围是2200pF~0.1μF。为减小漏电流,电容量不得超过0.1μF,并且电容器中点应与大地接通。C1~C4的耐压值均为630VDC或250VAC。
注意 
选择滤波器时要注意:
①明确工作频率和所要抑制的干扰频率,如两者非常接近,则需要应用频率特性非常陡峭的滤波器,才能把两种频率分开;
②保证滤波器在高压情况下能够可靠地工作;
③滤波器连续通以最大额定电流时,其温升要低,以保证在该额定电流连续工作时,不破坏滤波器中器件的工作性能;
④为使工作时的滤波器频率特性与设计值相符合,要求与它连接的信号源阻抗和负载阻抗的数值等于设计时的规定值;
⑤滤波器必须具有屏蔽结构,屏蔽箱盖和本体要有良好的电接触,滤波器的电容引线应尽量短,最好选用低引线短电感的穿心电容;
⑥要有较高的工作可靠性,因为作防护电磁干扰用的滤波器,其故障往往比其他元件的故障更难找。
安装滤波器时应注意以下几点:
①电源线路滤波器应安装在离设备电源入口尽量靠近的地方,不要让未经过滤波器的电源线在设备框内迂回;
②滤波器中的电容器引线应尽可能短,以免因引线感抗和容抗在较低频率上谐振;
③滤波器的接地导线上有很大的短路电流通过,会引起附加的电磁辐射,故应对滤波器元件本身进行良好的屏蔽和接地处理;
④滤波器的输入和输出线不能交叉,否则会因滤波器的输入―输出电容耦合通路引起串扰,从而降低滤波特性,通常的办法是输入和输出端之间加隔板或屏蔽层。
   
其他
电抗器
EMI吸收磁环
EMI吸收磁环常用于抑制电源线、信号线上的干扰,同时还具有吸收静电脉冲能力。将整束电缆穿过一个铁氧体磁环就构成了一个共模扼流圈,根据需要,也可以将电缆在磁环上面绕几匝。匝数越多,对频率较低的干扰抑制效果越好,而对频率较高的噪声抑制作用较弱。在实际工程中,要根据干扰电流的频率特点来调整磁环的匝数。通常当干扰信号的频带较宽时,可在电缆上套两个磁环,每个磁环绕不同的匝数,这样可以同时抑制高频干扰和低频干扰。从共模扼流圈作用的机理上看,其阻抗越大,对干扰抑制效果越明显。
 
 

*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

参与讨论
登录后参与讨论
推荐文章
最近访客